- Гильберт Давид
- \Программа Гильберта и теоремы Гёделя\Фреге, Пеано и Рассел, подобно Платону, верили в объективность мира математических соотношений, открываемых, а не изобретаемых учеными. Давид Гильберт, основатель формалистической школы, говорил, что математический объект существует, когда он определен непротиворечивым образом. Поэтому проблема доказательства сводится к построению непротиворечивости математической теории (т.е. к построению аксиоматической модели). И это становится центральной проблемой. В «Основаниях геометрит (1899) Гильберт попытался аксиоматизировать Евклидову геометрию. Все же нельзя сказать, что проблема была окончательно им решена. Никто не мог гарантировать непротиворечивость Евклидовой геометрии.Обнаруженные антиномии, кризис интуитивной очевидности аксиом, логицистские трудности, практичный, но не окончательный характер непротиворечивых теорий — все это подвигло Гильберта на создание программы, в рамках которой доказательство неотносительно, а «прямо» и «абсолютно» для аксиоматической системы. Поскольку классическая математика сводилась к трем большим аксиоматическим системам — арифметике, анализу и множествам, то естественно, что Гильберт начал с доказательства непротиворечивости арифметики, чтобы затем перейти к анализу и теории множеств. После Фреге был неизбежен скрупулезный анализ всех ингредиентов, лингвистических и логических механизмов развития теории. Все это ведет к полной формализации теории.Необходимо заметить, что формализация теории не означает ее символизацию. Формализовать теорию означает раздробить язык, введя в качестве правил формализации правила манипуляции принятыми формулами. Теория принимает форму чистого исчисления, где нет никаких ассоциаций с символами и их выражениями. А если все так, то непротиворечивость теории можно отождествить с невозможностью прохождения всей демонстративной цепочки. Утверждение при этом совпадет с отрицанием, что будет противоречием. Следовательно, полная аксиоматизация теории ведет к формализации и такой логике, назначение которой — конструировать эту теорию.Так какими же средствами мог Гильберт провести критический анализ логики в своей метаматике, если не с помощью той же логики? Разве это не порочный круг? И не к той же ли очевидности и интуиции прибег он для доказательства непротиворечивости? Гильберт пытался обосновать процедуры финитистскими методами, частично арифметическими. Финитистские методы сводятся к элементарным и интуитивным процедурам комбинаторного типа, используемым для конечного числа объектов и определяемых функций. Интуиция возвращена как средство обоснования математики, которая, как оказалось, всего лишь упрощает элементарные операции любого теоретическою исследования.Идеи Гильберта приняли многие талантливые математики, среди которых П. Бернайс (P. Bernays, 1888—1977), Дж. Гербрандт (J. Herbrandt, 1908—1931), В. Аккерман (W. Ackermann, 1898—1962), Дж. фон Нейман (J. Neumann, 1903—1957). Однако в 1931 г. Курт Гёдель (1906—1978) показал, что желаемую полноту аксиоматической теории чисел получить невозможно. Более того, формула логического исчисления, способного формализовать элементарную арифметику, недоказуема как формула, выражающая ее последовательность. Таким образом, непротиворечивости нельзя достичь, используя инструменты, принадлежащие к той же формальной системе. Это было настоящее поражение программы Гильберта. Гёдель показал невозможность чисто синтаксического доказательства непротиворечивости формальной системы. Гарантию такой логической последовательности теперь стали искать в интерпретациях и моделях исчисления.
Западная философия от истоков до наших дней. - "Петрополис".. Антисери Д., Реале Дж.. 1994.